AE法による打抜き加工のバリ発生評価

西本重人*新家昇**

*日本フィジカルアコースティクス株式会社 **関西大学工学部

キーワード: アコースティック・エミッション,ばり,摩耗,工具,保全

Evaluation of Burr During Punching Process Using AE Method.

Shigeto Nishimoto* Noboru Shinke**

*Nippon Physical Acoustics LTD
**Faculty of Engineering, Kansai University

Abstract

A wear of punch in press equipment makes burrs on a work piece. In this case, the dimension of product with a specified accuracy can not be properly accomplished. In this report, the evaluation of burr during punching process was investigated using AE method. The results are shown as follows: 1)AE is generated continuously due to burrs on a work piece. 2) AE amplitude increases with increasing number of production, but it has approximately constant at certain number of production. This opportunity corresponds to the time of experience-based tool change. 3) There is an adequate correlation between the height of burr and the AE energy. 4) The AE energy caused by burrs is independent of working conditions as punching speed, shape and dimension of punch. 5) Based on above experimental results, we made the special device capable of detecting burrs which occur on a work piece.

Key Words: Acoustic Emission, Burr, Wear, Tool, Maintenance

1. 緒言

金型を用いるプレス加工の中で、特に打抜き加工は切削加工などの加工法と比較して加工速度が速く、大量生産に向くことから、自動車や鉄鋼業界、また家電業界をはじめ、あらゆる分野で使用されている。しかし、その反面、金型は構造が複雑であるために、金型を構成するパンチやダイの摩耗を稼動中に判断することは困難である。また、さらに、その高速加工性により、いったんパンチやダイに異常が発生すると大量に不良品が発生する。現在、金型異常の検出方法としては、主に加工後の製品の抜取り検査や金型を定期的に交換する方法などが行われている。しかし、上記の方法では、突発的な金型の損傷により発生する不良品を防止することは困難である。さらに定期的な金型の交換は、金型コストの増大、段取り替えによるラインの停止など、生産コスト上昇の大きな原因となっていることから、

パンチやダイの異常を稼動中に的確に評価する技術の開発が望まれている 1 。

金型の異常としては、主に1)工具の摩耗によるバリの発生 2)パンチあるいはダイの折損 3)異物混入(主にカス上がり)による圧痕などをあげることができるが、不良発生の原因としてもっとも影響が大きく、発生頻度が高いのは1)のバリの発生である²⁾。一方、切削工具の摩耗および欠損の評価方法としてAE法が有効であることが報告されている³⁾⁴⁾。そこで、本報ではパンチあるいはダイの摩耗によるバリの発生の評価に AE 法の適用を試みた。その結果、バリの発生により放出される AE の特徴を明らかにするとともに、得られた知見を実際のプレス設備に適用し、バリの早期検出に良好な結果を得たので報告する。

2.基礎試験

2.1 試験装置

実機のプレス装置は、通常はパンチやダイが複数設置され、さらに構造も複雑である。したがって、発生するAEの挙動も複雑であると考えられる。そこで、Fig.1 に示すように、パンチを1本とした打抜き金型を使用することによりAEの発生を単純化し、パンチ摩耗によるばり発生時のAE挙動を検討することにした。

打抜き加工の試験条件を Table 1 に示す。パンチおよびダイの材質は、打抜き加工でよく使用される工具鋼(SKD11)を使用し、形状は円形とした。また、加工速度は厚み 2mm 前後の製品の打抜き加工を行う場合の標準的な加工速度である 1m/s に設定した 5)。パンチの形状と加工速度が A E におよぼす影響については、別途実験条件を変更して検討した。試料は厚さ 2mm の S45C のコイル材を使用して連続加工した。なお、本試験では摩耗の進行を促進することと、さらに加工条件を一定にするために加工油は使用しなかった。

2.2 計測装置

使用した計測システムを Fig.2 に示す。打抜き加工では、 打抜き加工時に発生する製品のそりを防止するために、ス トリッパと呼ばれる機構により製品を固定する。このスト リッパによる試料固定時に振幅の大きなAEが発生し、さ らに固定を解除する場合にもAEが発生して、大きなノイ ズ源となる。また、試料の送りにおいても、金型表面を試 料が接触して移動するために大量のAEの発生が懸念され る。上記のAEと加工時に発生するAEを弁別するための 手段として種々の方法が考えられるが、本試験では、プレ ス機から加工信号(カム信号)をAE装置に入力し、これ をトリガ信号として打抜き加工時のタイミングで発生する A E だけを検出するようにした。 A E センサの設置に関し ては、パンチやダイに直接センサを取り付けることは困難 であるので、Fig.1 に示すダイセットの静止部の位置に、 カップラントとして真空グリースを使用し、専用の取り付 け治具で取り付けた。実際の金型へAEセンサを設置する 場合においても、金型交換時の段取り等の容易さを考える と、上記の位置が最適であると考えられる。

A Eの計測条件を Table 2 に示す。加工時の衝撃や振動を除去するためにハイパスフィルタを 100kHz として計測した ⁶⁾。また、A E センサは、共振型の A E センサを使用すると発生する A E の振幅が大きくてプリアンプの入力部でオーバーレンジを生じた。そこで、感度の比較的低い、

広帯域型のAEセンサを使用して計測した。

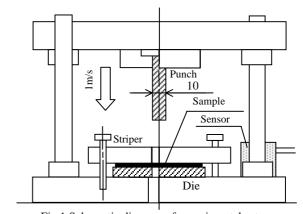
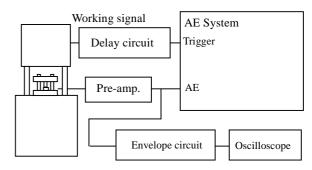



Fig.1 Schematic diagram of experimental setup.

Table 1 Experimental conditions in punching.

Item	Condition
Punch	Material: SKD11
	Diameter: 10 mm
Die	Material: SKD11
	Diameter: 10 mm
Punching speed	1 m/s
Feed speed	1 feed/s
Sample	Material: S45C Thickness: 2mm Width: 30mm Length: 30mm

- AE System: DiSP
- AE Sensor: WD (Nippon Physical Acoustics LTD)

Fig.2 Measuring system of AE
Table 2 Measuring conditions of AE

Item	Condition
HPF	100 kHz
LPF	1200 kHz
AE Sensor	Broad-band type
Sampling frequency	2 MHz
Pre-amplifier	40 dB
Time constant of envelope circuit	100 µs

3. 試験結果

3.1 基本特性

打抜き加工中に発生したAEの包絡線検波波形を Fig.3 に示す。(a)が加工開始から 500 回打抜いた時の波形を示し、(b)は打抜き回数が 1600 回の波形を示す。打抜き加工は、1)パンチの試料への接触 2)試料の塑性変形 3)せん断破壊 4)破断 という過程で進行する 7)。加工信号(カム信号)から判断すれば、図中のA部で示される波形は上記 1)から 4)までの打抜き過程で発生したAEと考えられる。加工数 1600 個でバリの発生が確認され、AEの波形形状には、Fig.3(b)に示されるB部に変化が認められた。

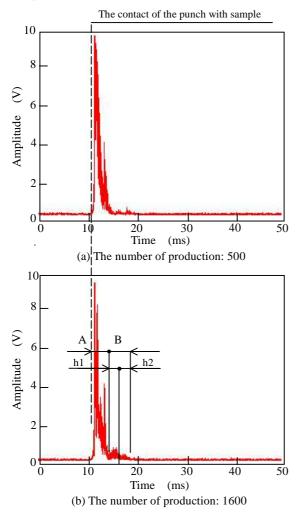


Fig.3 Waveform of AE signal generated during punching process.

この A E の発生原因を **Fig.4** を用いて考察する。パンチが摩耗するとクリアランスが大きくなり、図中 BP で示す破断面に階段状の分離面が形成され、この分離面がパンチとダイの間に巻き込まれてバリとなる 7 。上記分離面の巻き込みの際、Fig.4(a)に示す h1 の区間では、巻き込んだ分離

面とパンチ表面との間で金属接触が生じてAEが発生すると考えられる。さらにFig.4(b)に示す h2 の区間では、巻き込んだ分離面がバリを形成し、これがパンチとダイの間で金属接触を生じてAEが発生すると考えられる。すなわち Fig.3 において、通常は AE の発生は破断により A の区間で完了するが、バリが発生すると破断面の巻き込みにより h1+h2 の区間、すなわち B の期間連続的にAEが発生する。

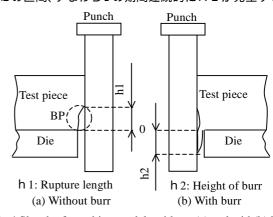


Fig.4 Sketch of punching models without (a) and with(b) burr. Fig.5 に生産数と B 部 (Fig.3(b))のA E 最大振幅の関係を示す。生産数の増加に伴い、振幅の上昇が観察されるが、生産数が一定量を超すとその後、A E 振幅はほぼ一定になる。この上昇の停止時期は、従来から経験的にパンチを交換していた時期と一致した。したがって、発生するA E の振幅を評価することにより、従来は経験的に行っていたパンチの交換を、経験を必要とせず実施することが可能である。しかし、図中にバリの発生時期を示すが、バリが発生してもバリの高さとA E の振幅の相関は認められなかった。

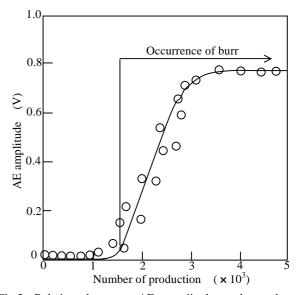


Fig.5 Relation between AE amplitude and number of production.

Fig.4 に示す破断長さ(h1)およびバリ高さ(h2)と、Fig.3(b)のB部で発生したAEエネルギーの関係をFig.6 に示す。パンチが摩耗して破断長さが短くなり、さらにバリが発生すると、AEエネルギーが急激に大きくなる。なお、ここで示すAEエネルギーは、Fig.3(b)のB部におけるAE振幅を時間で積分したものである。また、バリは孔の周縁に一様に発生しないので、バリの大きさはバリの最大高さで評価した。

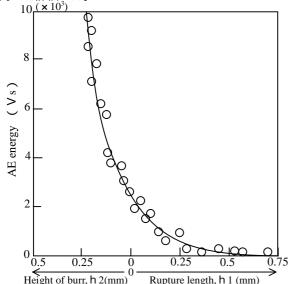


Fig.6 Dependence of height of burr and rupture length on AE energy.

上述のように、材料の巻き込みにより A E が発生するものと考えると、工具が摩耗してクリアランスが大きくなると、ダイとパンチの間に巻き込む材料の体積が増大し、バリ高さが大きくなる。したがって、A E の発生時間はバリ高さに比例して長くなり、A E エネルギーが増大するものと考えられる 7)8。

3.2 加工条件の影響

上記のようにバリの発生とAEのエネルギーに相関が認められた。そこで、発生するAEのエネルギーに対する加工条件の影響を考察し、実機への適用の可能性を検討した。

3.2.1 加工速度の影響

まず、発生するAEのエネルギーに対する加工速度の影響を検討した。Fig.7 に加工速度と発生したAEのエネルギーの関係を示す。本図は加工速度1m/sで1600個加工し、バリの発生を確認した後に加工速度を変化させてAEを計測したものである。加工速度が増加すると、発生するAEのエネルギーが小さくなり、さらにばらつきも小さくなる傾向が認められた。これは、加工速度が速くなると、パンチとバリの接触時間が短くなり、これに伴いAEの発生時間が短くなって、エネルギー量としては低下したものと考

えられる。ただし、バリ発生によるエネルギーの変化量に対し、加工速度によるAEエネルギーの変化量は極めて小さいので、実用上は考慮しなくても良いと考えられる。

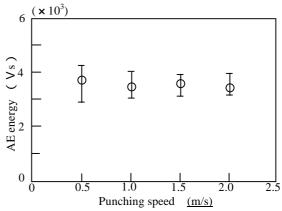


Fig.7 Relation between AE energy and punching speed.

3.2.2 パンチ形状の影響

次に、パンチ形状の影響を検討した。パンチの形状としては、パンチの基本となる、円形、正三角形、正方形の3種類について検討した。なお、大きさは円形を 10mmとして、正三角形、正方形は、パンチ側面と試料の接触面積が円形の場合と同一となるように加工した。Fig.8 に、発生するAEのエネルギーに対するパンチの形状の影響を示す。パンチ形状が変化しても、AEエネルギーの変化はほとんど認められない。したがって、パンチとバリの接触によってAEが発生するものと考えると、パンチ形状が変化しても接触面積が同じであるので、AEエネルギーはパンチの形状には影響を受けず、破断長さ(h1)とバリ高さ(h2)に関係するものと考えられる。

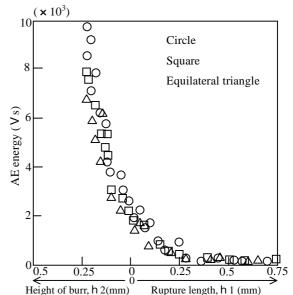


Fig.8 Dependence of height of burr and rupture length on AE energy in the case of various punch forms.

3.2.3 パンチの大きさの影響

発生するAEのエネルギーに対するパンチの大きさの影響を検討した。Fig.9 に発生するAEのエネルギーに対するパンチの大きさの影響を示す。パンチの大きさが異なっても、発生するAEのエネルギーに変化は認められない。また、パンチの大きさとバリ高さの間には相関が認められず、AEエネルギーはバリ高さのみに影響を受けることがわかる。

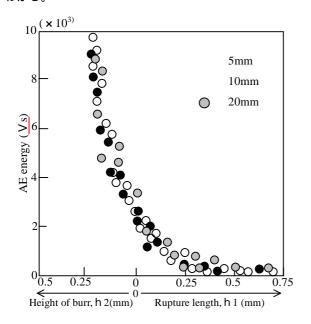


Fig.9 Dependence of height of burr and rupture length on AE energy in the case of various punch diameters.

4. 実機への応用

以上の研究結果をもとに、打抜き加工におけるバリの評価装置を開発した。Fig.10 に開発したバリ評価装置のブロック図を、Fig.11 に各部の信号出力のタイミングを示す。前述の実験と同じAEセンサを用いて金型から検出したAEは、プリアンプで増幅した後、HPF(ハイパスフィルタ)および LPF(ローパスフィルタ)で周波数的にノイズをカットし、検波回路で包絡線検波する(c)。また、バリ発生のタイミングで発生するAEだけを評価できるように、プレス機からの加工信号(a)を遅延回路とパルサー回路で加工し、バリ発生のタイミング信号を作成する(b)。ゲート回路では、上記のタイミング信号が発生した時にだけ包絡線検波波形を通過させる。すなわち、バリ発生のタイミングで発生したAEだけを通過させる(d)。エネルギー回路では、発生したAEのエネルギーを算出し比較回路にエネルギー量に比例した信号を出力する(e)。比較回路では、あらかじ

め設定した判断値と比較して、所定量以上のエネルギーが 発生すると、警報信号を出力する(f)。

本装置を 2000ton の打抜きプレス (パンチ数:4 本、加工能力:50 個/s)、試料(材質:S45 C相当、厚み:3.5mm) に適用した結果、所定のバリの発生を検知して、誤報を出すことなく警報を出力することができた。なお、板厚が1mm から 4.5mm までの試料を加工したが、同様の結果を得た。

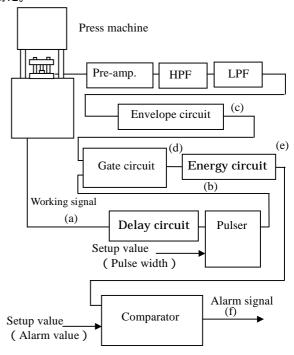


Fig.10 Block diagram for evaluation of burr during punching process.

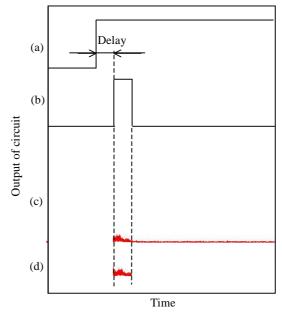


Fig.11 Processing method of AE signal for the system.

5. 結言

打抜き加工におけるバリ発生の評価をAE法により試みた。その結果、下記のことが明らかになった。1)バリの発生に伴ってAEが連続的に発生する。2)バリの発生に起因するAEの最大振幅は生産数の増加とともに増大するが、一定量を超すとその増加はほぼ停止する。この増加の停止時期は、従来から経験的に行われているパンチ交換時期と一致する。3)バリ高さとAEエネルギーの間に良い相関が認められる。4)バリによって発生したAEのエネルギーは、加工速度、パンチの形状、パンチの大きさなどの加工条件に影響を受けない。5)上記の知見をもとに、バリ検知装置を開発して実機に適用した結果、所定のバリの発生を検知することができた。

打ち抜き加工におけるバリの検知は、金型加工の大きな課題であったが、本知見によりバリ発生を早期に検知することができるので、バリによる不良品の防止、パンチの交換による設備停止時期の短縮、パンチ交換費用の削減など、大きな効果が期待できる。

参考文献

- 1) 小池茂幸,清水秀紀,並木喜正,増澤芳紀,菅野恵介,加藤 光吉:せん断加工における工具損傷の検出法,東京都立 工業技術センター研究報告書,17,pp.1-5,(1988)
- 2) 京利工業金型技術グループ: 知りたいプレス金型, ジャパンマシニスト, pp.23-25, (1981)
- 3) 森脇俊道: AE による切削状態認識の現状と将来, 日本機械学会誌, 89(807), pp.145-151, (1986)
- 4) 稲崎一郎:アコースティック·エミッションによる切削プロセスの監視,日本機械学会論文集(C編),51(466),pp.11 63-1169,(1985)
- 5) 橋本明: プレス加工ハンドブック, 日刊工業新聞社, pp.56-88, (1982)
- 6) 西本重人,今中拓一,長田清,服部常一: A E 法による金型 劣化評価技術の開発,第 11 回アコースティック・エミッショ ン総合コンファレンス論文集,pp.195-198,(1997)
- 7) 臼井英治,白樫高洋:加工の力学,朝倉書店,pp.109-113, (1974)
- 8) 高橋幸雄: プレス打抜きと型設計, 日刊工業新聞社, pp.36-102, (1981)